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Abstract
We present results for the temperature dependence of the mobility for elastic
scattering in a two-dimensional electron gas at low temperatures. Due to
anomalous screening in two-dimensional systems the mobility varies linearly
with temperature. We discuss many-body effects and spin-polarization effects
and compare with some recent experimental and theoretical results. We show
that the sign of the temperature dependence may change in spin-polarized
systems.

1. Introduction

It was found in experiment [1, 2] that at low temperature the mobility in silicon metal–oxide–
semiconductor structures decreases linearly with increasing temperature. The origin of this
linear temperature dependence is an anomalous screening effect in two-dimensional systems as
found in numerical calculations [3]. An analytical expression for the temperature-dependent
mobility was derived in [4]: it was shown that the temperature dependence is due to an
anomalous screening effect for wavenumbers q ≈ 2kF where kF is the Fermi wavenumber.
Evidently this means that this temperature dependence of the conductivity is related to Friedel
oscillations. The linear temperature dependence was calculated for weak disorder and is
now known as the ballistic regime. The ballistic regime corresponds to the lowest-order
Born approximation where the resistivity is linearly proportional to the impurity density Ni .
Multiple-scattering effects are neglected.

We argued [5] that at very low temperatures a crossover in the conductivity due to
interaction anomalies [6] should occur and the conductivity should decrease logarithmically
with decreasing temperature. The region with logarithmic temperature dependence due to
multiple-scattering effects is known as the diffusive regime. The crossover, which we predicted
15 years ago [5],was calculated recently in detail [7]. The linear temperature dependence in the
ballistic regime was confirmed in this calculation. Some comments concerning this theoretical
work are made at the end of this paper.
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Recently, the transport properties of two-dimensional systems in the presence of a magnetic
field parallel to the two-dimensional electron gas as realized in silicon MOSFET systems have
been attracted a lot of attention [8]. It was shown that the positive magnetoresistance is induced
by the polarization of the spin of the electron gas [9]. This magnetoresistance was explained
as a screening effect in a spin-polarized electron gas [10]. The theory has been confirmed for
two-dimensional carrier systems in silicon and GaAs structures.

A lot of new experiments concerning the linear temperature dependence have been
published recently including Si/Gex Si1−x heterostructures [11, 12], Si-MOSFET systems [13–
17], and GaAs/Alx Ga1−x As heterostructures [18]. These experiments have been made with
structures having low carrier density where interaction effects are very strong. Most interesting
in this context are the results in a strong parallel magnetic field (in-plane magnetic field), where
the electron gas is spin polarized [11, 15–18].

In this paper we discuss the temperature dependence of the conductivity in a system with
strong interaction effects and for an electron gas which is spin polarized. We shall see that in
both situations many-body effects, described by a local-field correction (LFC), are essential
in order to describe the transport properties. Moreover, we show that many-body effects can
change the sign of the linear temperature dependence.

The paper is organized as follows. We describe the model and the theory in section 2.
In section 3 we present our results for many-body and spin-polarization effects and describe
the consequences for the temperature dependence of the conductivity. We also compare with
experimental results. An extensive discussion of theoretical results given in [7] is in section 4.
We conclude in section 5.

2. Model and theory

We consider a two-dimensional electron gas in a heterostructure with a triangular confinement
potential. The two-dimensional carrier density N defines the Fermi wavenumber kF via
N = gsgvk2

F/4π . gs and gv are the spin and the valley degeneracy, respectively. The effective
Bohr radius a∗ = εL/m∗e2 is given in terms of the effective mass m∗ and the dielectric constant
εL of the host material. The Wigner–Seitz parameter rs is determined by the electron density as
r2

s = 1/π Na∗2. In this paper we present results for low density and rs is large. The Coulomb
interaction potential is given by V (q) = 2πe2 F(q)/εLq . F(q) � 1 is the form factor due
to the finite-width effects [19]. In an ideal two-dimensional electron gas width effects are
neglected and F(q) = 1. We consider charged-impurity scattering with impurities located
in the plane of the electron gas. The parameter α characterizes the behaviour of the random
potential for small wavenumber 〈|U(q → 0|2〉 ∝ q2α with α = −1 for impurity scattering.

We derived the analytical result [4] for the temperature-(T -) dependent conductivity σ(T )

for elastic scattering for h/τ0 < kB T < εF as

σ(T ) = σ(0)

[
1 − C(rs , α)

kB T

εF

]
(1a)

with

C(rs , α) = 2C(rs)C(α). (1b)

σ(0) = Ne2τ0/m is the conductivity at zero temperature. τ0 is the scattering time calculated
in the Born approximation, where multiple-scattering effects are neglected. The origin of this
anomalous temperature dependence is the anomalous temperature dependence of the static
susceptibility X0(q, T ) [19], which determines the screening function. This non-analytic
behaviour of X0(q, T = 0) at q = 2kF is related to Friedel oscillations and gives rise to the
linear T dependence of the static conductivity [3, 4].
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The coefficient C(rs) is given by [4]

C(rs) = F(2kF)[1 − G(2kF)]

F(2kF)[1 − G(2kF )] + 2kFa∗/gs gv

(2a)

with kFa∗ = [4/gsgv]1/2/rs . Charged-impurity scattering is characterized by

C(α = −1) = 2ln[2]/3 = 1.38. (2 b)

The form factor for the electron–electron interaction is expressed as

F(q) = 1 + 9q/8b + 3q2/8b2

(1 + q/b)3
. (3)

1/b is the length parameter for the thickness of the electron gas [19]. G(q) in equation (2a)
is the LFC [20]. It describes many-body effects due to exchange and correlation beyond
the random-phase approximation (RPA) and becomes extremely important in the low-density
regime, where the Wigner–Seitz parameter is large. Note that equation (2a) describes back-
scattering effects, where the wavenumber 2kF enters. In a recent paper [21, 22] the LFC
for two-dimensional systems (heterostructures and quantum wells) has been calculated within
a sum-rule approach of the Singwi–Tosi–Land–Sjölander theory [20]. Our earlier study [4]
was made within the Hubbard approximation for the LFC where only exchange is taken into
account. The effect of many-body effects in quantum wells and the temperature dependence
of the conductivity has been studied in [23].

For G(2kF ) < 1 the coefficient C(rs) is always positive, see equation (2a): it follows that
C(rs , α) > 0 and this is called metallic behaviour of the conductivity. However, if G(2kF) > 1
and if 2kFa∗/gsgv > |F(2kF)[1−G(2kF)]| than C(rs) is negative, see equation (2a): it follows
that C(rs, α) < 0 and this is called insulating behaviour of the conductivity.

We conclude that our theory can explain a sign-change in the temperature dependence.
The sign-change is related to the LFC and therefore to the importance of many-body effects.

Equation (1) can be used to determine C(rs, α) from experimental results for σ(T ): with
C(rs , α) from experiment and F(2kF ) from theory [19] one can determine G(2kF ) by using
equation (2a). In fact, this procedure has already been used in [17] and the value of G(2kF )

versus electron density was determined.
We mention that for a spin-polarized system σ(0) in equation (1a) is the zero-temperature

conductivity of the spin-polarized system. σ(0) was calculated in [10]. C(rs, α) for a spin-
polarized system shall be discussed in section 3.

We note that in our theory a degeneracy factor g = gsgv enters and a system with gs = 2
and gv = 1 is equivalent to a system with gs = 1 and gv = 2. Therefore, a spin-polarized
electron gas in a Si-MOSFET structure with gv = 2 and gs = 1 is equivalent (concerning the
degeneracy factor) to a non-spin-polarized electron gas in a GaAs/Alx Ga1−x As heterostructure
with gv = 1 and gs = 2.

3. Many-body and spin-polarization effects

Numerical results for C(rs) versus rs are shown in figure 1 for a heterostructure with gv = 2
and gs = 2. This corresponds to a non-polarized silicon MOSFET system. The solid curve is
the result including the LFC. The dashed curve is the result within the Hubbard approximation
and the dotted curve is the result within the RPA, where G(2kF) = 0. Note that we used a
logarithmic scale. The mass anisotropy was neglected for figure 1, therefore the width effects
in figure 1 are larger than in a real Si-MOSFET system. The depletion density was set to zero
for the calculation shown in figure 1. The finite LFC reduces C(rs) in the given rs-range by ap-
proximately a factor of two. We conclude that many-body effects are very important and should
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Figure 1. Coefficient C(rs ) versus Wigner–Seitz parameter rs for a heterostructure with gv = 2
and gs = 2 (g = 4). For the solid curve many-body effects are taken into account. The dashed and
dotted curves represent the Hubbard approximation for the LFC and the RPA with G(2kF ) = 0,
respectively.

be included in the calculation of the temperature dependence of transport properties. Due to
exchange and correlation effects G(2kF) increases with increasing rs , which leads to a reduced
C(rs) due to correlation. Similar results have been found before for quantum wells [23].

For an ideal electron gas with F(q) = 1 we now describe the effects of valley degeneracy
and spin degeneracy. In figure 2 we show our numerical results for C(rs) versus rs for
g = gvgs = 4, 2 and 1 as solid curves. The dashed curves correspond to the case where
the LFC is neglected. This corresponds to the RPA. For gvgs = 1 we see that the coefficient
C(rs) is negative at low density due to many-body effects described by G(2kF). On the other
hand we see that C(rs) is positive for gvgs = 2 and 4. This means that the conductivity
is metallic-like (C(rs) > 0) in spin-polarized or non-polarized Si-MOSFET systems and
Si/Gex Si1−x heterostructures, as found in experiments [1, 2, 9, 11, 12, 17]. On the other hand
we conclude that for low density in spin-polarized GaAs/Alx Ga1−x As heterostructures the
conductivity is insulating-like (C(rs) < 0). Exactly this behaviour was recently reported in
experiment [18]. Note that C(rs) for g = 1 is strongly density dependent, in agreement with
recent experimental results [18].

In figure 3 we show G(2kF) as a function of rs for different values of g = gvgs . It
becomes quite clear that with decreasing g the LFC becomes more and more important. At
this point we must admit that our approach for the LFC is not exact and gives, for large rs , only
qualitative results. In fact, we believe that a more accurate calculation of the LFC would result
in a larger G(2kF) than found within our approach, especially at large rs [24]. We mention
that the values of G(2kF) for g = 4 are in reasonable agreement with values obtained from
recent experimental results [17].

At this point a physical interpretation is in order. The effective Coulomb interaction is
given by Vef f (q) = [1 − G(q)]V (q) and many-body effects, described by G(q), decrease
the effective interaction. For the spin-polarized system the effective Coulomb interaction is
reduced due to the larger LFC, see figure 3. The origin of this is the Pauli principle. In fact,
for a short-range interaction potential in the one-dimensional electron gas one finds G(q) = 1
for the spin-polarized system and interaction effects disappear completely, while G(q) < 1
for a non-polarized system [22]: the reason for this is that the Pauli principle does not allow
us to have two electrons with the same spin at the same place in space. In one dimension
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Figure 2. Coefficient C(rs ) versus Wigner–Seitz parameter rs for an ideal electron gas with no
extension effects perpendicular to the interface F(2kF ) = 1. For the solid curves many-body
effects are taken into account. Results are given for different degeneracy factors g = gvgs . The
dashed curves show the RPA with G(2kF ) = 0.

Figure 3. LFC G(2kF ) versus Wigner–Seitz parameter rs for an ideal electron gas with no extension
effects perpendicular to the interface. The combined degeneracy factor g = gvgs is indicated.

interaction effects must disappear for a short-range potential in the spin-polarized system. In
two dimensions the Pauli principle leads to the enhanced LFC for g = 1 compared to g = 2 and
4, see figure 3. The fact that G(2kF) > 1 for g = 1 means that for this wavenumber q = 2kF

the effective Coulomb interaction Vef f (2kF) < 0 is no longer repulsive but attractive.



222 A Gold

4. Discussion

Recently, a diagrammatic approach for the temperature dependence of the conductivity has
been developed in order to describe the crossover regime between the ballistic and the diffusive
regime [7]. When the results are used to describe the ballistic regime a linear temperature
dependence is found with a coefficient C(rs, α) given by

C(rs , α) = −1 − 3Fσ

1 + Fσ
. (4)

Here Fσ is a Landau Fermi liquid parameter which defines the spin susceptibility κs =
κ0/(1 + Fσ ) and κ0 is the spin-susceptibility of the free electron gas.

It was argued [7] that for the spin-polarized electron gas Fσ = 0 and C(rs , α) =
−1, independent of the carrier density. In experiment with spin-polarized holes in GaAs
heterostructures [18] a negative coefficient was found; however, the coefficient was strongly
density dependent, as found in our theory, see figure 2 for g = 1.

For −0.25 < Fσ < 0 one expects C(rs , α) < 0 and an insulating temperature depen-
dence, in disagreement with experimental results for non-polarized electron gases [2, 12, 17].
For Fσ < −0.25 one finds C(rs, α) > 0 and a metallic temperature dependence. Within a
jellium model for an interacting electron gas one expects that Fσ becomes zero for rs going
to zero (large density) [25]. Then one would expect for Fσ > −0.25 a sign change of the
temperature dependence C(rs , α) < 0. Such a sign change as a function of the carrier density
has not been observed in experiment with Si-MOSFETs [2, 12, 17].

We claim that for the non-polarized electron gas there is no predictive power in the
expression given in equation (4): one uses C(rs , α) as obtained from experimental results
of σ(T ) to determine Fσ via equation (4). This means that the parameter C(rs, α) is replaced
by the parameter Fσ and one finds values for Fσ which depend on the electron density. One
generally believes that the two-dimensional electron gas can be described as a Fermi liquid
within a jellium model. However, it appears that the density dependence of the measured Fσ

does not correspond to a jellium model [25] with Fσ approaching zero for high electron density.
However, there exist at least five problems with the diagrammatic approach of [7]. Firstly,

there is a problem concerning the scattering time at zero temperature. In the diagrammatic
approach contributions to the temperature independent scattering time appear which become
exponentially large at low temperature, see equation (3.33) and corresponding comments in [7].
Therefore, it is fair to say that the diagrammatic approach is unable to describe the scattering
time at zero temperature. In conclusion: this approach does not give a reasonable expression
for τ0.

Secondly, the linear temperature corrections to the conductivity are proportional to the
scattering time τ0. We conclude that it is difficult to give a physical sense to temperature
corrections if an infinite contribution is neglected, and exactly this approach was used in [7].
In other words, I think that a theory which is unable to give a valid expression for the static
conductivity at zero temperature cannot be a correct transport theory for finite temperatures.

A third problem is connected with exchange contributions [7] which are characterized by
V (q = 0) where V (q) is the interaction potential. V (q = 0) represents forward scattering.
We believe that for transport properties only back-scattering V (q = 2kF ) is important and
V (q = 0) cannot contribute. Our results [4] are obtained by taking into account only back-
scattering with the correct screening function. We believe that terms of the form V (q = 0)

should not appear in expressions for transport properties.
The fourth problem consists in the dependence of C(rs , α) on a spin parameter via Fσ ,

see equation (4). It is unclear why the conductivity should depend on Fσ , which is a spin
parameter, while the Coulomb interaction and the random potential are independent of the



Linear temperature dependence of the mobility in two-dimensional electron gases 223

electron spin. We believe that in perturbation theory such a result is possible. However, this
means that such a result is not exact.

A fifth problem is related to the form of the disorder. The results given in [7] are for
a short-range random potential. The real random potential in silicon MOSFET systems for
low density, where many-body effects are important, is, however, charged-impurity scattering.
In [4] it was shown that C(rs , α) depends on the form of the random potential. To consider
disorder due to charged impurity scattering might be difficult in the theoretical frame of [7],
especially in connection with the term V (0).

From these arguments we conclude that we have no confidence in the approach formulated
in [7]. We believe that the inclusion of LFCs in our approach goes beyond the approach of [7]
and takes into account processes which are neglected in [7]. On the other hand we believe
that the diagrammatic approach formulated in [7] needs more theoretical support in order to
explain why the conductivity depends on a spin parameter Fσ . Moreover, the importance of
V (0) terms needs to be clarified.

5. Conclusion

The temperature dependence of the conductivity for elastic scattering in two-dimensional
systems has been evaluated in the case of a low electron density and in the case of complete spin
polarization. It is shown that many-body effects (exchange and correlation) are quantitatively
important and can lead to a sign change in the coefficient for the linear temperature dependence
in the case of a spin-polarized system. By taking many-body effects into account the present
work extends the validity range of our earlier work [4] to smaller carrier density and spin-
polarized systems.
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